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We suggest a method of numerical calculation of the effective thermal conductivity and the time for estab- 

lishing quasihomogeneity of disperse materials. The method is based on the principle of  generalized 

conductivity realizable within the framework of a nonstationary thermal problem. 

Calculation of the thermal  conductivity of disperse materials  is usually based on the principle of general ized 

conductivity. According to this principle, the structure of the material  is modeled using its most  simplified element ,  

i.e., a unit cell. The  considered heat  exchange in a unit cell must reflect the most essential  features  of heat  exchange  

in the material  itself. Calculation of heat exchange to determine the effective thermal  conductivity is carr ied out 

within the f ramework  of a s ta t ionary  thermal  problem. Additional conditions such as the adiabat ic i ty  of the side 

surfaces of the cell and  isothermicity of its end-face surfaces are super imposed on the heat  exchange  (see Fig. 1). 

The  calculation scheme suggested below presupposes the use of a nons ta t ionary  thermal  problem for 

determining the heat  exchange in a unit cell. For this purpose, following the recommendat ions  given in [1 ], the 

type of unit cell is selected. It is a s sumed  that  the cell is in contact with a semibounded  homogeneous  medium with 

an effective thermal  conductivity calculated for the given type of cell by the method of [2 ]. The  heat  capaci ty of 

the medium is de te rmined  by an additive scheme. The  side surfaces of the unit cell are adiabatic,  and  the thermal  

power Q = f q d S  (q = const) is l iberated on the lower horizontal surface, i.e., a boundary  condition of the second 

kind is prescribed.  Then ,  a nonsta t ionary  thermal  problem is solved with account for the boundary  conditions on 

the surfaces St and  $2 with the initial conditions t = 0 and T -- 0. A numerical  calculation makes  it possible to 

determine q(x, y, z = 1) and Q = f qdS  on the surface $2. At a certain instant  of time t -- T the quanti ty Q(x, y, z 

= 0) becomes equal to Q(x,  y, z = 1) with a certain proportionality factor k whose choice is de te rmined  by the 

specific material  and  the aims of the calculation carried out. The  time r is identified with the period of es tab l i shment  

of a quasis ta t ionary process; when t < r the disperse sample is not quasihomogeneous.  At the t ime r the mean 

temperatures  of the surfaces T 1 -- J" TdS and  T 2 = f TdS and their  difference AT -- T 2 - TI are  de te rmined ,  and  
SI $2 

then the effective thermal  conductivity of the disperse medium is found: 

kqSl (1) 
"~ef = A T "  

Though  being ext remely laborious, the above approach has certain advantages  over the tradit ional  one. In 

part icular ,  its use gives addi t ional ,  fundamen ta l ly  important  informat ion on the t ime for es tabl i sh ing quasi-  

homogenei ty of the material .  As regards the calculation of the thermal  conductivity itself of the disperse  mater ia l ,  

the method considered removes the ra ther  artificial requirement  of isothermicity for the end faces of the unit cell. 

We will use this method to calculate the characterist ics of the simplest (lamellar) systems.  

Layers  Perpendicular  to the Heat  Flux. We consider a lamellar  material  consisting of N substances .  The i r  

layers,  repeated periodically, comprise lhe s tructure of the material .  We know the values of the coefficients of 
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Fig. 1. Example  of a unit cell: 1 and 2) first and second components ,  3) 

quasihomogeneous semi-infinite medium. 

density,  heat  capacity,  and  thermal  conductivity and the volumetric concentrat ions for each of the substances;  the 

thickness of the layers is Ii . . . . .  IN • In the present  case the adiabat ic  surfaces are  perpendicular  to the layers of 

the mater ia l ,  and consequently,  we may  use a one-dimensional  approximat ion scheme.  As the unit cell, it is 

advisable to take the first group of layers 1 . . . . .  N (see Fig. 2a). We replace the remaining  portion of the material  

by a quasihomogeneous medium N + I .  

The  tempera ture  field of such a sys tem is described by the sys tem of equations 

02Tin 1 OTm 
- - -  , m =  1 . . . . .  N +  1 ,  ( 2 )  

Ox 2 a m Ol 

with the initial condition 

T m ( x , O )  = 0 ,  m = 1 . . . . .  N +  1,  (3) 

and the boundary  conditions 

- 2 1  Ox [x=O q0, (4) 

TN+I  (x  = o~, t) = O.  (5) 

We assume that on the interfaces between the media Sm the following conditions are  satisfied: 

Tm[x~Sm = Tm+ 1 ]xES m,  
OTto OTto+ I ] 

- - ]  , m = 1 . . . . .  N .  ( 6 )  
)tin Ox x~Sm = )tm+ l Ox xESr n 

For the quasihomogeneous medium N +  1, we can calculate the values of the thermal  conductivity and 

thermal diffusivity coefficients. 

The  thermal conductivity coefficient is defined by the relation 
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Fig. 2. Layers perpendicular (a) and parallel (b) to the heat flux: 1, 2 . . . . .  

N, numbers of the layers; N +  1, a quasihomogeneous semi-infinite medium. 

= ~-mm ' ( 7 )  
m = l  

where dm is the volumetric concentration of the substance in the material, equal to 

lm (8) 
d i n =  N ' 

i = l  

where lm is the layer thickness. 

The value of the volumetric heat capacity coefficient is determined from the formula 

N 

(PC)el = ~ dmPmCm " (9) 
rrt=l  

The coefficient of effective thermal diffusivity of layer N +  1 is defined by the relation 

2ef (10) 
a e f -  (PC)ef • 

The proposed method makes it possible to evaluate the time for establishing quasihomogeneity.  We solve the prob- 

lem of nonstationary heat conduction iteratively and find the heat flux q at the point x = XN. The condition for 
termination of the iteration process is 

(qo - q) 

qo 
- - < , l ,  ( l l )  
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TABLE 1. Results of Numerical Calculation (the thickness of the layers 6 = 1 mm; ~ = 1, 2, 3; l = 3 mm) 

Substances composing 
the layers 

Time required to 
establish quasihomogeneity 

T, SeE 

Thermal  conductivity coefficient 3.el, W / ( m -  K) 

exact value est imated value 

Layers perpendicular to the heat flux 

AI 

Pb 

A1, Cu, Pb 

Fe. Cu, Ni 

Pb, Cu, Ni 

BeO, MgO, A1203 

0.7 

2.7 

1.72 

1.86 

1.98 

2.51 

237.00 

35.00 

85.00 

115.43 

71.33 

66.74 

238.60 

35.23 

84.83 

116.45 

71.77 

67.21 

Layers parallel to the heat flux 

AI 

Pb 

Fe 

Pb, Fe, Ni 

Pb, Fe, Sn 

SiO2, MgO. A1203 

0.7 

2.7 

3.37 

1.06 

0.81 

0.78 

237.00 

35.00 

80.00 

67.67 

60.67 

37.43 

Note: T h e  values of the coefficients are considered at T = 300 K. 

238.01 

35.23 

80.54 

67.82 

61.28 

38.51 

where r/ is the prescribed error. The time r for establishing quasihomogeneity of the sample is determined by 

condition (l l ) .  Using formula ( l ) ,  we calculate the coefficient of effective thermal conductivity,  which can be 

compared with the value obtained from formula (7). 

Numerical solution was carried out for three layers (N = 3) for different materials and combinations of 

them. Results of the calculation are presented in Table 1. 

Layers  Parallel to the Heat  Flux. We consider a lamellar material of N components.  The  values of the 

coefficients of densi ty ,  thermal conductivity, and heat capacity for each component are  known. Th e  thickness of 

the layers l I . . . . .  I N is also given. 

It is evident that in the present case the planes Qm passing through the middle of each layer  are adiabatic 

surfaces (see Fig. 2b). As the unit cell it is natural here to select a portion of the material enclosed between the 

planes QI and QN- We also prescribe the length l. The  remaining portion of the material enclosed between the 

planes Ql and ON and lying from l to oo is replaced by a quasihomogeneous semibounded medium. T h e  temperature  

field of such a system is described by the equations 

O2Tm O2Trn 1 c)T m 

dx  2 Oy 2 a m dt 
m = !  . . . . .  N + I ,  (t2) 

with the initial condition 

T m ( x , y , O )  = 0 ,  m =  1 . . . . .  N - t -  1 ,  (t3) 

and the boundary  conditions 
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I = q 0 ,  m =  ! . . . . .  N ,  
- 2m - ~ Y  y=0 

(14) 

TN+I ( x , y =  oo , t) = 0 .  (15) 

In the given case the equalities of the temperatures at the boundaries of contact of the layers and the equalities of 

the heat fluxes through the boundaries are 

] dTrn+l [ ~xx , . (16) , m = l  . . . .  N - I  T m l x ~ S  m = Tm+l ]xeS m ,  am OTto = )'m+l 
dx I xeS  m x E S  m 

TmlyeSN+ 1 = TN+ 1 ]Y@SN+ 1 , 
aT,,,] aTN÷~ [ 

)trn ~d-Y'-Y I Y ~ S N +  1 = ~N+I 0"-'-"-7- YU-SN+ 1 ' 
m = 1 . . . . .  N ,  ( t7 )  

oT~[ 0TN[ = 
Ox x=0' 0--; I x e S  N O . 

(18) 

For calculating the effective value of the thermal conductivity coefficient the following relation is used: 

N 
;tef = E dm2m,  

m=l 
(19) 

where 

I m 
d m -  N 

i=1 

(20) 

The coefficient of volumetric heat capacity is determined by the relation 

N 

(PC)et : E d m P m C r n "  
rn=l 

(21) 

The  value of the effective thermal diffusivity coefficient of layer N +  1 is determined in the form 

2er 
a e f -  (PC)el • 

(22) 

For solving the two-dimensional problem we use the method of al ternating directions [3 1. Th e  region is 

divided parallel to the coordinate axes (a rectangular grid); when the y or x coordinate is fixed on the grid, the 

corresponding second derivative in the heat conduction equations of system (12) is equated to zero. Thus,  we obtain 

systems of equations involving a single space variable. The  overall system is solved by fixing the values of x and y 

al ternately and solving the corresponding set of one-dimensional  subproblems on segments and semi-lines. The  

semi-lines are replaced by segments of sufficient length (the length is selected so that the temperature  field has no 

time to spread to the end of the segment during the time of the the scheme operation).  The junction regions of the 

division where the thermal conductivity and thermal diffusivity coefficients undergo a discontinuity are  cut out; 

here the temperature  values are calculated from equations of joining and boundary conditions (16)-(18) using the 
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calculated temperature values on neighboring parallel segments. The scheme is stable and gives an error of the 

order of the decomposition step. 

Similarly to the case of layers perpendicular to the heat flux, we solve the problem of nonstationary heat 

conduction iteratively, determine the heat flux q through the plane y = l, and check the fulfillment of condition 

(11). From this we find the time after which the material may be considered quasihomogeneous. We also determine 

the value of the thermal conductivity coefficient from formula (1). 

Results of numerical calculation for various combinations of materials are presented in Table 1. 

Thus, the method suggested makes it possible to calculate numerically the thermal conductivity coefficients 

of disperse materials. The structure of the material is modeled by a unit cell with averaged thermophysical 

coefficients that comes in contact with (borders on) a semibounded body. The method described is based on solution 

of a nonstationary thermal problem that makes it possible to determine simultaneously both the effective thermal 

conductivity of the disperse material and the time needed to establish its quasihomogeneity. 

N O T A T I O N  

a, thermal diffusivity; c, heat capacity; d,n, volumetric concentration of the rn-th layer of substance in the 

material; l, length of the unit cell; q, heat flux density; q0, constant value of the heat flux density; Q, thermal 

power; S, area; t, time; T, temperature; TO, initial temperature; x, y, space coordinates; ~l, thermal conductivity 

coefficient; r/, error in the heat flux density; ~, time required to establish quasihomogeneity. 
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