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THERMAL CONDUCTIVITY AND
QUASIHOMOGENEITY CRITERION OF DISPERSE
MATERIALS

G. G. Spirin, N. Yu. Nenarokov, and UDC 536.21
K. N. Leshchinskii

We suggest a method of numerical calculation of the effective thermal conductivity and the time for estab-
lishing quasihomogeneity of disperse materials. The method is based on the principle of generalized
conductivity realizable within the framework of a nonstationary thermal problem.

Calculation of the thermal conductivity of disperse materials is usually based on the principle of generalized
conductivity. According to this principle, the structure of the material is modeled using its most simplified element,
i.e., a unit cell. The considered heat exchange in a unit cell must reflect the most essential features of heat exchange
in the material itself. Calculation of heat exchange to determine the effective thermal conductivity is carried out
within the framework of a stationary thermal problem. Additional conditions such as the adiabaticity of the side
surfaces of the cell and isothermicity of its end-face surfaces are superimposed on the heat exchange (sece Fig. 1).

The calculation scheme suggested below presupposes the use of a nonstationary thermal problem for
determining the heat exchange in a unit cell. For this purpose, following the recommendations given in {1], the
type of unit cell is selected. It is assumed that the cell is in contact with a semibounded homogeneous medium with
an effective thermal conductivity calculated for the given type of cell by the method of {2]. The heat capacity of
the medium is determined by an additive scheme. The side surfaces of the unit cell are adiabatic, and the thermal
power Q = [gdS (g = const) is liberated on the lower horizontal surface, i.e., a boundary condition of the second
kind is prescribed. Then, a nonstationary thermal problem is solved with account for the boundary conditions on
the surfaces S; and S, with the initial conditions ¢t = 0 and T = 0. A numerical calculation makes it possible to
determine g(x, y, z=1) and Q = fqu on the surface S;. At a certain instant of time ¢ = v the quantity Q(x, y, z
= 0) becomes equal to Q(x, y, z = 1) with a certain proportionality factor & whose choice is determined by the
specific material and the aims of the calculation carried out. The time 7 is identified with the period of establishment
of a quasistationary process; when ¢ < 7 the disperse sample is not quasihomogeneous. At the time v the mean
temperatures of the surfaces Ty = f TdS and T, = [ TdS and their difference AT = T, — T are determined, and

$ S2
then the effective thermal conductivity of the disperse medium is found:

_ kqSl

Xef T AT

(1)

Though being extremely laborious, the above approach has certain advantages over the traditional one. In
particular, its use gives additional, fundamentally important information on the time for establishing quasi-
homogeneity of the material. As regards the calculation of the thermal conductivity itself of the disperse material,
the method considered removes the rather artificial requirement of isothermicity for the end faces of the unit cell.
We will use this method to calculate the characteristics of the simplest (lamellar) systems.

Layers Perpendicular to the Heat Flux. We consider a lamellar material consisting of N substances. Their
layers, repeated periodically, comprise the structure of the material. We know the values of the coefficients of
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Fig. 1. Example of a unit cell: 1 and 2) first and second components, 3)
quasihomogeneous semi-infinite medium.

density, heat capacity, and thermal conductivity and the volumetric concentrations for each of the substances; the
thickness of the layers is /;, ... , [y . In the present case the adiabatic surfaces are perpendicular to the layers of
the material, and consequently, we may use a one-dimensional approximation scheme. As the unit cell, it is
advisable to take the first group of layers 1, ..., N (see Fig. 2a). We replace the remaining portion of the material
by a quasihomogeneous medium N+1.

The temperature field of such a system is described by the system of equations

2
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with the initial condition

Ty (*,0=0, m=1,..,N+1, (3)
and the boundary conditions
_ = 4)
l = 4o > (
Jdx =0
The  (x=0,0=0. )

We assume that on the interfaces between the media S,, the following conditions are satisfied:
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For the quasihomogeneous medium N+1, we can calculate the values of the thermal coanductivity and
thermal diffusivity coefficients.
The thermal conductivity coefficient is defined by the relation
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Fig. 2. Layers perpendicular (a) and parallel (b) to the heat flux: 1, 2, ...,
N, numbers of the layers; N+1, a quasihomogeneous semi-infinite medium.
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where d,, is the volumetric concentration of the substance in the material, equal to
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m
dm =75 s
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i=1
where [, is the layer thickness.
The value of the volumetric heat capacity coefficient is determined from the formula

N
(pc)ef = E dmpmcm'
m=1

The coefficient of effective thermal diffusivity of layer N+1 is defined by the relation

_ Aef
Aep =

(pc)ef )

(7
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®
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The proposed method makes it possible to evaluate the time for establishing quasihomogeneity. We solve the prob-
lem of nonstationary heat conduction iteratively and find the heat flux ¢ at the point x = xn. The condition for

termination of the iteration process is

((1() -q) <

qdo T

(11)
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TABLE 1. Results of Numerical Calculation (the thickness of the layers [, = | mm; =1, 2, 3; [= 3 mm)

Substances composing Time rcquired to A Thermal conductivity coefficient A¢f, W/ (m-K)
establish quasihomogeneity
the layers 1, sec cxact value estimated value
Layers perpendicular to the heat flux
Al 0.7 237.00 238.60
Pb 2.7 35.00 35.23
Al, Cu, Pb 1.72 85.00 84.83
Fe.Cu, Ni 1.86 115.43 116.45
Pb, Cu, Ni 1.98 71.33 71.77
BeO, MgO, Al203 2.51 66.74 67.21
Layers parallel to the heat flux
Al 0.7 237.00 238.01
Pb 2.7 35.00 35.23
Fe 3.37 80.00 80.54
Pb, Fe, Ni 1.06 67.67 67.82
Pb, Fe, Sn 0.81 60.67 61.28
SiO2, MgO. Al203 0.78 37.43 38.51

Note: The values of the coefficients are considered at 7 = 300 K.

where 5 is the prescribed error. The time v for establishing quasihomogeneity of the sample is determined by
condition (11). Using formula (1), we calculate the coefficient of effective thermal conductivity, which can be
compared with the value obtained from formula (7).

Numerical solution was carried out for three layers (N = 3) for different materials and combinations of
them. Results of the calculation are presented in Table 1.

Layers Parallel to the Heat Flux. We consider a lamellar material of N components. The values of the
cocfficients of density, thermal conductivity, and heat capacity for each component are known. The thickness of
the layers [, ..., Iy is also given.

It is evident that in the present case the planes Q, passing through the middle of each layer are adiabatic
surfaces (see Fig. 2b). As the unit cell it is natural here to select a portion of the material enclosed between the
planes Q; and Qun. We also prescribe the length /. The remaining portion of the material enclosed between the
planes Q) and Qu and lying from [ to = is replaced by a quasihomogeneous semibounded medium. The temperature
field of such a system is described by the equations

2 2
T O Tw _ L 0T

: M S =t L N (12)
dax dy a,, dt
with the initial condition
Tp(6,3,0)=0, m=1,.. N+1, (13)

and the boundary conditions
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In the given case the equalities of the temperatures at the boundaries of contact of the layers and the equalities of
the heat fluxes through the boundaries are

aTm ()Tm+1
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For calculating the effective value of the thermal conductivity coefficient the following relation is used:

N
)'ef = 2 d"}"l’ (19)
m=1
where

d. =" (20)

The coefficient of volumetric heat capacity is determined by the relation

N
(Pc)ef = z dmpmcm' (21)
m=1

The value of the effective thermal diffusivity coefficient of layer N+1 is determined in the form

A f
=_° 22
ef (Pc)ef . ( )

a

For solving the two-dimensional problem we use the method of alternating directions {3]. The region is
divided parallel to the coordinate axes (a rectangular grid); when the y or x coordinate is fixed on the grid, the
corresponding second derivative in the heat conduction equations of system (12) is equated to zero. Thus, we obtain
systems of equations involving a single space variable. The overall system is solved by fixing the values of x and y
alternately and solving the corresponding set of one-dimensional subproblems on segments and semi-lines. The
semi-lines are replaced by segments of sufficient length (the length is selected so that the temperature field has no
time to spread to the end of the segment during the time of the the scheme operation). The junction regions of the
division where the thermal conductivity and thermal diffusivity coefficients undergo a discontinuity are cut out;
here the temperature values are calculated from equations of joining and boundary conditions (16)-(18) using the
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calculated temperature values on neighboring parallel segments. The scheme is stable and gives an error of the
order of the decomposition step.

Similarly to the case of layers perpendicular to the heat flux, we solve the problem of nonstationary heat
conduction iteratively, determine the heat flux ¢ through the planc y = /, and check the fulfillment of condition
(11). From this we find the time after which the material may be considered quasihomogeneous. We also determine
the value of the thermal conductivity coefficient from formula (1).

Results of numerical calculation for various combinations of materials are presented in Table 1.

Thus, the method suggested makes it possible to calculate numerically the thermat conductivity coefficients
of disperse materials. The structure of the material is modeled by a unit cell with averaged thermophysical
coefficients that comes in contact with (borders on) a semibounded body. The method described is based on solution
of a nonstationary thermal problem that makes it possible to determine simultaneously both the effective thermal
conductivity of the disperse material and the time needed to establish its quasihomogeneity.

NOTATION

a, thermal diffusivity; c, heat capacity; d,,, volumetric concentration of the m-th layer of substance in the
material; [, length of the unit cell; ¢, heat flux density; gg, constant value of the heat flux density; Q, thermal
power; S, area; f, time; T, temperature; Tg, initial temperature; x, y, space coordinates; A, thermal conductivity
coefficient; #n, error in the heat flux density; T, time required to establish quasihomogeneity.
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